当前位置:起跑线幼教网学习网小学数学教学小学数学课堂实录《分数的基本性质》课堂实录与评析

《分数的基本性质》课堂实录与评析

03-16 14:04:44  浏览次数:989次  栏目:小学数学课堂实录
标签:五年级数学课堂实录,二年级数学课堂实录, 《分数的基本性质》课堂实录与评析,http://www.qpx6.com

  
  【教学目标】
  1、让学生通过经历预测猜想——实验观察——数据处理—合情推理—探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
  2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
  3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
  【教学重点】使学生理解分数的基本性质。
  【教学难点】让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
  【教具准备】课件,五年级数学学具盒,计算器。
  【教学过程】
  一、 呈现材料,发现问题
  1、师:老师这儿有一个关于孙悟空在花果山上做美猴王时发生的故事,想听吗?
  花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴1一块,猴2见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块,猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴3三块。
  [评析:创设情境,在学生喜欢的人物分饼的故事中直接导入本课,这样设计可以吸引学生的注意,让学生主动感知,主动去思考,激起学生的探究兴趣,让学生产生想获知结果的欲望。内含情感与态度目标:孙悟空,做事认真仔细,机智,勇敢,本事大等。]
  师:听到这里,你有什么想法吗?或你有什么话要说吗?
  生1:我觉得孙悟空很聪明。
  生2:我认为三只小猴分到的饼是一样多的。
  生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。
  [评析:一般的教师会在这里提出“哪只猴子分得的饼多?”或“你认为猴王这样分公平吗?”这样的问题。但这位教师却提出“听到这里,你有什么想法吗?或你有什么话要说吗?”。这个问题优于前两个问题是因为学生在思考时思路更深、更广。有效的问题有助于摆脱思维的滞涩和定势,促使思维从“前反省状态”进入“后反省状态”,问题的解决带来“顶峰”的体验,从而激励再发现和再创新,有效的问题有时深藏在潜意识或下意识中,“顿悟”由此而生。有效的创设问题可以激发学生创新意识。内含情感与态度目标,体现公平。]
  2、师:大家都觉得其实三只小猴分到的饼一样多,那你们有什么方法来证明一下自已的想法,让这三只小猴都心服口服呢?怎么验证?
  (1) 师引导学生充分利用桌面上学具盒中的学具(其中一条长方形纸片为事先放入,其它都是五年级数学学具盒中原有的),小组合作,共同验证这三个分数的大小?
  (2) 师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?
  组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/4=2/8=3/12。
  组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/4=2/8=3/12。
  组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/4=2/8=3/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)
  组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/4=2/8=3/12。
  组5:我组与他们的验证方法都不一样,我们是计算的:1/4=1÷4=0.25;2/8=2÷8=0.25;3/12=3÷8=0.25。三个分数都等于0.25,所以1/4=2/8=3/12。
  [评析:书本上的设计是用折纸来验证这三个分数相等,在这里执教者大胆的放大教材,把一系列探究过程放大,把“过程性目标”凸显出来。同时也为学生探究方法的多元化创造了条件,出现了多种验证的方法。还有这样设计把一些知识联系起来,用计算器的目的,是和五年级上学期的一节计算器课联系起来,而且为验证猜想做准备,可以比较分数的大小,节约时间。和单位“1”的概念联系起来,体现出了单位“1”概念中的两层含意。]
  3、组织讨论
  (1) 师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)
  板书1/4=2/8=3/12
  (2) 你能从图上找到另一组相等的分数吗?
  板书3/4=6/8=9/12
  [评析:书本例1为比较3/46/8和9/12的大小。执教者在创设情景时选择的分数是有目地的]
  4、引入新课
  师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。
  生:分数的分子和分母变化了,分数的大小不变。
  师:我们今天就来共同研究这个变化的规律。
  5、引导猜测
  师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。
  生1:分子和分母都乘以一个相同的数,分数的大小不变。
  生2:分子和分母都除以一个相同的数,分数的大小不变。
  生3:分子和分母都加上一个相同的数,分数的大小不变。
  生4:分子和分母都减去一个相同的数,分数的大小不变。
  师:根据学生回答板书
  [评析:这样设计注意了知识背景的丰富性,拓宽了“分数基本性质”的研究背景。在教学中,学生充分观察学习材料,发现问题后,教师引导学生提出猜测。学生的实际猜想可能会出现观点不一,表达方式不同,或者不够完整,甚至是错误的,这都不重要,重要的是它是根据学生已有的知识经验提出的,能够自已提出问题,已经向探索迈出了可喜的一步。教师留给了学生足够的思空间,让学生充分展现心中的疑惑,呈现了四种不同的假说。如此一来,学生不但是进入到了知识的学习过程中,更是进入到了知识的研究过程中。“分数基本性质”的研究背景从知识层面上来看已经拓宽了,从以前的只局限于“分子和分母同时乘(或除以)一个相同的数,分数的大小不变”拓宽到对““分子和分母同时乘(或除以、或加上、或减去)一个相同的数,分数的大小不变”的研究,有利于学生更为充分地经历“性质”形成的过程,全面地理解和认识“分数的基本性质”,同时还为沟通加、减、乘、除四种情况在分数的大小不变过程中的区别和联系奠定了基础。]
  二、 活动研究,探究规律。
  1、引导研究,感知规律
  师:猜测是不一定正确的,需要通过验证才能知道猜测是不是有道理,规律是否存在。我们需要对以上的猜测进行验证。你们准备如何进行验证?
  生:举一些例子来验证
  师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?
  生:分子和分母都乘以一个相同的数,分数的大小不变。
  师:好,我们就选这个,试试看。
  学生以小组为单位进行尝试验证,教师作适当指导。
  反馈:根据学生回答板书
  1/2=0.5
  1×2/2×2=2/4=0.5
  1×3/2×3=3/6=0.5
  师:看了这些小组的举例验证,能说明这个猜测有道理吗?
  有什么要补充的吗?
  (学生没有答出0除外)
  师:谁能写出几个与1/3相等的分数。比一比谁写的多。
  生回答,师板书1/3=2/6=3/9……
  师:这样写得完吗?
  生:不能
  师:分子和分母是不是可以乘以所有的数。
  生:0要除外。
  师:为什么0要除外呢?
  生:0不能做除数,也不能做分母。
  [评析:学生在巩固知识的过程中得出结论:这样是永远也写不完的。这时,教师适时点拨,将学生的思维引向更深层次,从而自然得出“0除外”的结论。这样形成的记忆是深刻的。]

[1] [2] [3]  下一页

,《分数的基本性质》课堂实录与评析