标签:小学数学竞赛指导,小学数学学法指导,
《约分例2》教学建议,http://www.qpx6.com
(1)教学例2时,可以直接出示例题,让学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。然后小组讨论,互相启发,再全班交流。独立思考有困难的学生,可以看看书上是怎样找的,看懂了在小组内交流。
一般学生除了想到课本上介绍的两种方法之外,还会有学生想到:先写出27的因数,再看27的因数中哪些是18的因数,从中找出最大的。
教师还可以启发学生对这些方法加以改进。比如:
写出18的因数,1、2、3、6、9、18从大到小依次看18的因数是不是27的因数。即18不是27的因数,9是27的因数,所以9是18和27的最大公因数。
当然也可以在以后的练习中提醒学生不断自己总结经验,有好方法向全班同学介绍。
(2)第81页上的“做一做”,可以让学生独立完成,独立观察,每组数有什么特点,再作交流。教师可以加以总结,并指出这是求两数最大公因数的两种特殊情况:
①当两数成倍数关系时,较小的数就是它们的最大公因数;
②当两数只有公因数1时,它们的最大公因数也是1。
教师可以告诉学生,像这样能够直接看出最大公因数的,就不用再从头去找公因数了。
(3)第81页上的“你知道吗?”可以让学生课外阅读。如班级的基础较好,也可在课堂上作为拓展学习的内容,指导学生自学。教师可以提示,两个数所有公有质因数的积,就是这两个数的最大公因数。
,《约分例2》教学建议