标签:数学题,数学手抄报,
六年级上册“认识百分数”教学问答,http://www.qpx6.com
学生在例3中两次把分数化成百分数,第103页“试一试”又把三个百分数改写成分数,在此基础上,教材让学生想一想:分数化成百分数、百分数化成分数要注意什么?这里的“注意”有两层内容:一层是基本的思路和方法,即先把分数化成小数,再把小数改写成百分数;先把百分数写成分母是100的分数,再化简分数。另一层是关于特殊情况的处理,如分数的分子除以分母,除不尽怎么办?又如百分数写成分母是100的分数,如果分子是小数怎么办?
问:本单元应用百分数的知识解决哪些实际问题?两道例题的教学重点各在哪里?
答:求一个数是另一个数的百分之几,是百分数的一类应用。本单元例4和例5都是百分数的简单应用,所解决的问题只需要一步计算(列出的算式里只有一个运算符号)。例4教学一般的问题,和百分数意义的联系很明显,容易找到相比较的两个数量。例5教学求出勤率的问题,是百分数意义的专门应用。先编排一般的问题,能理解求一个数是另一个数的百分之几问题的数量关系和解答方法,以这些知识为基础,教学求百分率的问题,难度就小了。
求一个数是另一个数的百分之几,可以看成求一个数是另一个数的几分之几的特殊情况。它的问题表述形式、数量关系以及选用的运算都与求一个数是另一个数的几分之几相同,但问题的答案必须是百分数。教材在认识分数的时候,编排了求一个数是另一个数的几分之几的问题,本单元例4的教学重点是沟通新旧知识的联系,把求一个数是另一个数的几分之几的经验迁移到新的问题情境中。这道例题用条形图表示王红等3人一周中长跑的路程,学生看了条形图,不仅能了解各人跑的千米数,还能引起对旧知识的回忆,直观地联想到李芳跑的千米数是王红的4/5,王红跑的千米数是林小刚的5/7……因而在求李芳跑的路程是王红的百分之几时,很自然地想到先求出李芳跑的路程是王红的几分之几,再化成百分数。教材通过大卡通告诉学生,求4是5的百分之几,可以先用小数表示4除以5的商,再把小数化成百分数。让学生体会,如果先写成分数形式的商,还得化成小数再写成百分数,不如用小数表示除法计算的结果简便。“试一试”求王红跑的路程是林小刚的百分之几,已经列出了除法算式,让学生求商并写成百分数,教学时要注意两点:一是突出求百分之几问题的数量关系,这里是王红跑的路程与林小刚跑的路程比,把林小刚跑的路程看作单位“1”,而例4是李芳跑的路程与王红跑的路程比,把王红跑的路程看作单位“1”。所以,王红跑的千米数在例4的算式里是除数,在“试一试”的算式里是被除数。二是算式5÷7的商是循环小数,应该和前面的分数化成百分数一样,遇到除不尽时,商保留三位小数,即百分号的前面保留一位小数。
例5教学求百分率的实际问题,关键是理解出勤率的含义。教材指出,出勤率就是实际出勤人数占应出勤人数的百分之几,详细解释了出勤率的含义,把求百分率的问题回归成求一个数是另一个数的百分之几的问题。这样,学生就能理解求出勤率的方法与算式。在计算田径队周一的出勤率后,让学生自选两天的数据计算相应的出勤率,巩固对出勤率的认识。周三、周四的实际出勤人数与应出勤人数相同,算式是40÷40=1,要指导学生把1改写成100%。还要反思,为什么周一、周二、周五的出勤率不是100%?出勤率会高于100%吗?使学生对出勤率的体验深入一步,成为理解其他百分率的基础。教材的练习中陆续出现成活率、入学率、升学率、森林覆盖率、造林合格率、近视率……让学生在出勤率的基础上,体会这些百分率的含义,感受百分率在生活、生产中的广泛应用。
上一页 [1] [2]
,六年级上册“认识百分数”教学问答